Object, Instrument, Technology

This rack has 3 square and 3 circular brass plates of varying dimensions. It was used to demonstrate the effect of changes in the size and thickness of plates on both their tone and the Chladni figures that they produce. A plate that is the same size as the one next to it, but double the thickness, will produce a note twice as high, while a plate that is half the area of the one next to it, but double the thickness, will sound a note that is four times higher.

 

 

Image
“Handmade Paper Waterfall Plot: Beethoven’s 8Th Symphony (1)”. n.d.
Object, Instrument, Technology

This photograph shows a three-dimensional representation of sound using paper. The spectrum (frequencies from low to high) is represented by an arrangement of single strips of paper, with lower frequencies in the foreground. The changes in the spectrum over time are visible as variations in the profile of the paper strips, if read from left to right. Such paper models were used at the Technische Universität Berlin in the 1960s to represent the sounds of speech (phonetics) and music (acoustics).

Object, Instrument, Technology

The German scientist Ernst Chladni was one of the pioneers of experimental acoustics. His research on different kinds of vibrations served as the basis for the scientific understanding of sound that later emerged in the 19th century. 

Text
Chladni, Ernst Florens Friedrich. 1830. Die Akustik. Leipzig: Breitkopf und Härtel.
Text
Robartes, Francis. 1692. “A Discourse Concerning The Musical Notes Of The Trumpet, And Trumpet-Marine, And Of The Defects Of The Same”. Philosophical Transactions 16 (95): 559-563.
Video
Chladni, Ernst Florens Friedrich. 2012. “Chladni Plate Demonstration From The National Museum Of American History”. Smithsonian National Museum of American History. https://youtu.be/KEttRmu2kGk.